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Note 

A Simple Strategy for Finding the Low-Lying Solutions 
of the Restricted Nuclear Hartree-Fock Equations 

INTRODUCTION 

The Raleigh-Ritz (RR) method provides a simple means of approximating the 
lower lying eigenstates of a bounded (or semi-bounded) operator. Obviously, how 
good the approximation is depends strongly on the choice of Ritz basis vectors. 
Recently, in the case of strongly interacting systems described by a many body 
effective Hamiltonian operator, it has been suggested that an optimized choice of 
these basis vectors can be generated from variational methods such as, for example, 
the Hartree-Fock (HF) method [l-6]. The idea is simply to use the lowest lying 
solutions obtained from the variational method as the Ritz basis vectors. Such a 
prescription clearly does not impose any a priori structure on the basis vectors. 
Using variational methods to ascertain the structure of the Ritz vectors is physically 
appealing. To some extent the choice of the basis vectors is then intimately connec- 
ted to the dynamics of the system since, in both the basis generation and the RR 
step, the same interaction is used. Furthermore, in the case of the HF equations, the 
dimensionality of the basis generation is determined by the number of single par- 
ticle states and not by the dimensionality of the many-body space. If not too many 
basis states are required, good approximate nuclear structure calculations in very 
large model spaces are certainly feasible. The difficulty, of course, is to construct an 
operationally efficient strategy for generating these basis states. In the present work, 
we concentrate on the specific problem of finding the lowest lying solutions of the 
non-linear restricted HF equations. The present method can be extended quite 
easily to other more general variational methods such as the Hartree-Fock- 
Boguliubov method. 

The general strategy that evolves, we believe, is applicable to a wider class of 
nuclear structure problems. At finite temperatures, the aforementioned method 
which is designed to approximate the low-lying eigenspectrum, provides an 
excellent means of approximating the results for heated nuclei in the canonical 
ensemble [7]. Fluctuations in the number of particles are not introduced as in 
the case of most finite temperature mean field calculations. Using constrained 
variational methods with angular momentum constraints to generate the basis 
states, provides a convenient means of approximating the spectrum of states with 
a particular angular momentum [8,9]. In this manner symmetry restoration of the 
basis states by projection after variation can be circumvented in a simple manner. 

There are, however, certain severe computational problems involved in the pre- 
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sent strategy. Clearly, we require something more than an efficient means of solving 
the HF equations. If no further restrictions are placed on the structure of the basis 
states, other than that they are solutions of a particular variational method, it is 
important to devise a strategy in which the lowest lying solutions are found only 
once and not repeatedly. In order to avoid finding the same solution of the HF 
equations more than once, we have made use of penalty functions involving the 
overlap with previously obtained solutions of the HF equations. The inclusion of 
these penalty functions initially results in a set of equations which no longer may 
be cast into the form of a non-linear eigenvalue problem. Hence many of the 
methods developed for finding the HF groundstate solution cannot be applied to 
this more general problem. Furthermore, the use of penalty functions guarantees 
that the solutions found are distinct but does not necessarily yield the lowest lying 
solutions of the HF equations. 

In the case of the restricted HF equations there are two useful methods of solving 
the equations. If one is interested in obtaining the lowest lying solution, it is 
generally accepted that a good strategy is to construct the single particle HF 
Hamiltonian and to diagonalize it repeatedly in the model space. Choosing the 
single particle states with the lowest lying single particle energies as the occupied 
single particle states in the next iteration step usually ultimately yields the HF 
ground state or a very small subset of the low-lying solutions. The reason for this 
is simply that the total HF energy, the quantity to be minimized, is to a large extent 
just the sum of the occupied single particle state energies. 

However, if one is interested in generating a set of the lower lying solutions of 
the HF equations, the diagonalization strategy is inadequate. In this case it is 
advantageous to solve the restricted HF equations via Newton-Raphson methods 
[4, IO] or in larger systems via modified Crank-Nicolson schemes [ 11, 121. Here 
one chooses the occupation of the single particle orbitals initially and iterates only 
within the space of these occupied orbitals. It is not possible to rearrange the 
occupation of the single particle orbitals according to the single particle energies as 
in the diagonalization procedure, because the complete set of single particle orbitals 
and energies is not known. Because no rearrangement takes place, it is possible to 
generate many more solutions of the HF equations simply by choosing different sets 
of initially occupied orbitals. However, there is no a priori guarantee that a set of 
occupied single particle orbitals will lead to either a new or even a low lying 
solution of the HF equations. 

To obtain a set of the lowest lying solutions of the HF equations in a reasonably 
efficient manner, the following strategy was devised. For a given set of occupied 
orbitals, a few iterations are performed via the HF diagonalization procedure in 
order to rearrange the occupation of the orbitals in the trial state according to their 
single particle energies. At this point subsequent iterations are performed via the 
Newton-Raphson procedure. To avoid obtaining the same solution more than 
once, penalty functions that involve the overlaps between the trial state and pre- 
viously obtained solutions of the HF equations are introduced. These functions 
involve multipliers, which are then reduced to zero to obtain the next solution. 



SOLUTIONS OF NUCLEAR HARTREE-FOCK EQUATIONS 245 

In the next section the details of the strategy are presented. The numerical results 
obtained are given in Section 3. 

2. APPLICATIONS OF THE METHOD 

We begin by considering the two methods of solution of the Hartree-Fock 
equations. The full many-body Hamiltonian may be written in second quantized 
form as 

fi=C (4 fici Ifi> u:a,+; c (apI PI$)a:a;a~a,, (1) ‘M ZSYb 
where the a,’ (erg) are the single particle creation (annihilation) operators and A,, 
P denote the single particle energy and two-body residual effective interaction 
operators, respectively. In the restricted Hartree-Fock approximation the many- 
body state I@) is required to be a single Slater determinant of A single particle 
orbitals ICC), each of which is expanded in terms of the orthonormal basis lj), 
j= 1, 2, . ..) N, 

la>= 5 di” Id, (2) 
j=l 

where the expansion coefficients fulfill the orthonormality requirement 

1 dJ* df = 6,,, a, /I = 1, 2, . . . . A. (3) 

The expectation value of the Hamiltonian may then be expressed as 

(@IfiI@)=~dq*ei6iidq 
%iJ 

+ t .& 4’ da’ (01 p IkO 4 d;, (4) 

where the (ijl P [El) are the fully antisymmetrized matrix elements of the two-body 
interaction and ei are the eigenvalues of the single particle Hamiltonian fi,,. 
Minimizing this expectation value with respect to the expansion coefficients subject 
to the constraint above yields the HF single particle eigenvalue problem 

1 hyF d,” = E, d;, (5a) 

where 

hyF = ej 6, + 1 df’ (ikl 9 17Z) df. (5.b) 
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For an initial choice of the expansion coefficients, diagonalization of the HF 
Hamiltonian matrix, hHF, yields the new set of N eigenvalues and N eigenvectors. 
We then choose the eigenvectors corresponding to the lowest A eigenvalues to be 
the new expansion coefficients of the occupied orbitals in the next iteration step. 
This procedure repeatedly tends to generate a very small subset of the low-lying 
solutions which almost always includes the Hartree-Fock ground state. It is, 
however, very difficult to adapt this procedure to produce a larger set of basis states 
efficiently or to prevent the same solution being obtained more than once. 

The second method of solution proceeds by minimizing the HF energy directly, 
subject to penalty constraints to obtain a new distinct solution; that is, one such 
that 

(@lW#l, 

where Y is any previous solution, we introduce the positive definite penalty 
function 

B 
l- I(@1 WI” 

which tends to infinity if the trial state approaches !I? 
This penalty function is included in the minimization; that is 

The penalty multiplier must ultimately be reduced to zero, re-solving the above 
equations at each stage. For a given choice of the penalty multiplier after a con- 
verged solution of Eq. (6) is obtained, the new penalty multiplier is taken to be the 
product of the old multiplier and the overlap squared; that is fl= /?I ( CD 1 Y)l*. 
When b is less than 10P3, it is set equal to 0. Any number of penalty functions may 
be used with separate multipliers, thus allowing us to produce a set of distinct 
solutions. 

This minimization problem may be solved using a Newton-Raphson method. 
Since the states I@) and ) Y) are Slater determinants, their overlap is easily seen 
to be 

(@pl Y) =det A, (7) 

where A is the matrix of the overlap of the single particle orbitals 
N 

A.;.= 2 d,“*c;, cc, A = 1, 2, . . . . A, 
j= 1 

where the cf denote the expansion coefficients of the single particle orbitals IL) of 
the Slater determinant I Y) 

IA>= i c: lj>, i = 1, . . . . A. (9) 
,=I 
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Expanding the determinant in terms of the minors M(A),,, 

det A = 1 (-)‘+a A.,M(A),, 
3. 

(10) 

yields the explicit system of equations for dq, 

F;(d, E) = 0 

f d,“‘dJ=&,,, 
,=l 

where 

I+’ M(A),,(det A) 
F:(d,&)=Zh,d:-~c,idi+2~‘c”~~_(detA)’)’ (llc) 

i i' 

and h, is given in Eq. (5b). Here one clearly sees that equations to be solved cannot 
be brought into the form of a non-linear eigenvalue problem. 

The derivatives necessary for the Newton-Raphson method are then 

+ Q?(&c~(-)“+” ~(~),,)(C,C~(-Y’+~ JWA),,) 
(1 - (det A)‘)’ 

1 + Wet 4’ 
1 -(detA)2 1 

+2a(Ci,,c:-cf(-)“+“+‘J+Y M(A),,,,) det A 
(1 - (det A)*)* 3 (124 

aF;laEB, = -dy ii,,, (12b) 

and 

-z&y, [ 1 d;* dj” - Sml,] = df 6,, + d;’ 6,,, 
’ i t-1 

where we have used the expansion of the minors of A in terms of the second minors 
MA ).d,li’T 

M(A),, =C (-)r’+a’ Ax’),‘M(A)~~‘,~j.‘. (13) 
2' 

This method is efficient for generating many different solutions since the occupation 
of the single particle orbitals is to a certain extent fixed by the choice of the initial 
expansion coefficients. As a result, the solutions are found over a wide range of 
energies, and there is no way to ensure that a low lying solution will be found for 
a given choice of the start coefficients. In larger systems, where storage limitations 
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may make it necessary to eliminate the inversion problem inherent in the 
Newton-Raphson method, it may be advantageous to use the imaginary time step 
method [ 121 to solve Eq. (1 la) and (1 lb). 

We propose a method that is a combination of both methods above, Starting 
from a set of coefficients, we first perform a few diagonalization iterations to 
rearrange the single particle orbitals such that those corresponding to the lowest 
single particle energies are occupied. The resulting coefficients are then used as 
initial values for a Newton-Raphson type minimization with any necessary penalty 
functions, which allows us to generate a distinct set of low-lying solutions. 

Solutions may be generated in specific symmetry classes, for example, axial or 
time reversal symmetry, by generating start coefficients with a definite symmetry. 
Both the Hartree-Fock and Newton-Raphson procedures preserve the symmetries 
of the coefficients [13,4], provided that the solutions used in the penalty functions 
have the same symmetry as that of the start coefficients. Hence it is generally 
worthwhile to look for solutions with a definite symmetry before attempting to find 
solutions that do not possess any symmetry. 

3. NUMERICAL RESULTS 

In the present work we have attempted to find the lowest lying axially symmetric 
HF states with isospin T= 0 in “Ne. The “Ne nucleus has been taken to consist 
of an inert I60 core plus four active valence particles in the 2s-ld shell. In the 
2s-ld shell we used an effective Hamiltonian with the Vary-Yang interaction [14], 
including additional third-order corrections to the G matrix to provide a more 
complete accounting of the core polarization effects [IS] and the following single 
particle energies: 

ed5,2 = -5.00 MeV 

e42 = 0.08 MeV 

e Cl 2 = -4.13 MeV. 

To solve the HF equations, the HF orbitals were expanded in a truncated harmonic 
oscillator basis with expansion coefficients (dl}. Isospin symmetry was respected, 
yielding a twofold degeneracy in the HF orbitals and guaranteeing solutions of the 
HF equations with T= 0. 

It should be noted that if one is only interested in the HF ground state for a 
deformed nucleus, choosing the appropriate Nilsson single-particle orbitals backex- 
panded in a harmonic oscillator basis for the occupied orbitals is an ideal choice, 
yielding a converged solution of the HF equations in a few iterations. Choosing 
simple low-lying lplh excitations in either the Nilsson basis or, with respect to the 
HF ground state as the initial guess for the occupied orbitals, does not, however, 
in general lead to low-lying solutions of HF equations. In fact, previous calculua- 
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tions in “Ne with a slightly different interaction seem to indicate that the important 
low-lying basis states have a large component of 4p4h configurations with respect 
to the HF ground state [l]. Furthermore, earlier shape mixing calculations [16] 
have pointed out that a simple nonself-consistent basis containing the HF ground 
state, plus low-lying one-particle one-hole excitations with respect to the HF 
ground state is not sufficient to approximate the low-lying T = 0 spectrum in 20Ne. 

To test the proposed strategy for finding the lowest lying solutions of.the HF 
equations we have therefore randomly constructed 15 different sets of expansion 
coefficients for the occupied orbitals in “Ne, each of which possesses axial as well 
as time-reversal symmetry. These sets of expansion coefficients were used as the 
initial guesses in all the numerical calculations. 

In Table I we present the results in which no penalty functions have been used. 
Repeated diagonalizations of the HF Hamiltonian, starting with the aforemen- 
tioned sets of expansion coefficients, in the majority of cases yields the lowest lying 
solution or the HF ground state. Three other low lying solutions are also found, 
again in every instance more than once. If no diagonalization of the HF 
Hamiltonian is performed and the solutions are obtained via the Newton-Raphson 
method without penalty functions, the majority of the solutions have variational 
energies that do not lie very low. In fact, one does not even obtain the ground state 
solution. We do not always find a solution for each set of expansion coefficients as 
we have limited the number of iterations in the Newton-Raphson method to 200. 
As the number of mutual diagonalizations of the HF Hamiltonian is increased, the 
solutions found tend towards the same subset of multiple low-lying solutions 
obtained via the diagonalization procedure. When the Newton-Raphson method 

TABLE I 

The Variational Energies of the Solutions of the HF Equations in 
MeV Obtained from a Set of 15 Randomly Constructed Initial Choices of 

the Expansion Coefficients of the Occupied Orbitals, 
which Have Both Time Reversal as well as Axial Symmetry 

0 1 2 3 HF 

- 38.964(3) - 38.964(7) - 38.964(6) - 38.964( 7) 
-30.609(2) - 30.609(2) - 30.609(3) - 30.609(2) - 30.609(2) 
-30.111 -30.111 -30.111(2) -30.111(2) 
-29564(l) - 29.564( 2) 

-27.891(3) -27.891(4) 
-27.552(2) -27.552(3) -27.552(l) 
- 2.489(5) 
- 2.064(2) 

Note. No penalty functions have been used. The Iirst columns give the solutions obtained when Ck3 
diagonalizations of the HF Hamiltonian have been performed. The numbers in parentheses refer to the 
number of times the solution has been obtained. In the last column the solutions are obtained via the 
HF diagonahzation procedure. 
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TABLE II 

The Variational Energies of the Solutions of the HF Equations in MeV 
Obtained from the Same Set of 15 Start and Number of Diagonalizations of 

the HF Hamiltonian Coefficients Used in Table I 

0 1 2 3 

- 38.964 - 38.964 - 38.964 - 38.964 
- 30.609 - 30.609 - 30.609 - 30.601 

- 29.564 -29.564 - 29.564 
-27.891 -27.891 -27.891 

- 27.552 - 27.552 - 27.552 -27.552 
- 2.496 
- 2.064 - 2.064 

Nofe. Penalty functions have been used to eliminate repeated solutions. 

has been preceded by three diagonalizations of the HF Hamiltonian, essentially the 
same subset of multiple solutions is obtained as in the diagonalization procedure. 

In Table II the results in which penalty functions have been used to eliminate 
finding the same solution more than once are given. If at least one diagonalization 
has been performed before the Newton-Raphson method is applied, we have been 
able to obtain five of the six lowest lying solutions of the HF equations. In most 
cases we do not find more than about five solutions. In part this is due to the fact 
that after some of the solutions have been found, it is increasingly more difficult to 
find a set of start coefficients that is linearly independent to the previously obtained 
HF solutions. We suspect that this is why we have not found the HF solution with 
the variational energy of -30.111. Lastly, because the penalty multipliers must 
eventually be reduced to zero, solutions of Eq. (6) must be found for decreasing 
values of p. Again, we have limited the maximum number of iterations in 
Newton-Raphson for each value of B to 200. In some cases converged solutions 
were not always obtainable for this number of allowed iterations. 
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